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Presented here 1s the variational statement of the problem of non-linear
oscillations of the ideal, incompressible 1liquld enclosed in a container of
finite dimensions and subjected to the forces of gravity and surface tension.
The variational approach allows thils problem to be solved by direct methods.

1. We shall consider the motion of the ideal, incompressible liquid in
a contalner of finite dimensions. The liquid volume V partially fills the
container, the remalning part is occupled by gas. It is assumed that the
liquld 1s acted on by the gravitational forces of Intensity g and the for-
ces of surface tenslion. We shall denote the coefficlent of surface tension
for I, the container — gas interface by g¢,, the coefficlent of surface
tension for 3%, the contalner — liquid interface by ¢,, and ¢ , that, for
S the gas — liquid interface.

We shall use the Cartesian system of coordinates (xyz, with the plane
xy normal to the vector g and the z-axis pointing vertically upward (Fig.l).
Moreover, it 1s specifled that the xy-plane
coincldes with the mean position cof the
liquid surface. S, shall denote the pro-
Jection of free 1liquid surface § on this
rlane and 7 shall denote the intersection
of the surfaces § and £ the internal
surface of the container. The elevation of
the free surface above s = 0 shall be
denoted by ((x,y,t), For the equilibrium
positlion ¢ = ¢ (x,y).

We shall denote the velocity of the liquid
by v and its density by p . We shall
neglect the mass of the gas above the liquid
and consider it to be quiescent.

2. The kinetic energy of the system 1s
given by

1
T= 7pg o2V (2.1)

v
Subject to above assumptions the potential energy can be written as
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= %pgg 82dS + 68 + 6,3, + 0,3, (2.2)
5,

and consists of potential energy due to the gravitational field of intensity
¢ and the free energies of the interfaces %,, $, and § .

N o t e . It should be pointed out that the expressions taken for the
energy of the interfaces between two media are correct only if the media are
qulescent, Generally speaking 1t does not follow that the expressions will
gemain the same for the case of moving media. This question is not consi-

ered here.

The Lagranglan for the system is
L=7T_—1 (2.3)

and the action 1integral after Hamilton
t

J = SL dt. 2.4)

0
According to Hamilton's principle the action integral for motion (2.4%)
assumes a statlonary value, 1.e, its isochronic variation vanishes: &7 = O.

We shall conslder the liquid contained in the volume ) as a mechanical
system obeying the following relations, The flow 1s potential, the liquid
is inextensible (capable of sustaining infinite tensions) and contalner
walls are Inpermeable, i.e.

v=Ve,. V-v=0, v, == (2.5)

Also, the vertical components of the velocity of liquid particles con-
tained in the free surface coincldes wlth the rate of vectorial displacement
of the free surface itself (*)

dg/des= v, (2.6)

The volume of the liquid does not vary, i.e. V = const . The last equa-
tion, isdperimetry, can be excluded if instead of considering the Lagrangian
L , one conslders the function

L' =L -+pfV 2.7)
where the guantity s 1s independent of the space variables x, y and z.

As a result of Equations (2.1) to (2.4} and (2.7) the action integral can
be written in the form

l
J= § {%pg W2 dV + pr,% og \ dS — a8 — 0,2, — 0,5, dt @.8)
. ». y
0 v 5,

The problem of the description of the fluid motion can, therefore, be
stated as follows: from a set of functions satisfying Equations {2.5) and
(2.6) to choose functions extremizing the action integral, 1.e. satisfying
87 = O,

3. We shall show that the varilational statement c¢f the problem of ideal
incompressible fluid motion in fixed contalner and subjected to the action
of the forces of gravity and surface tension, is equivalent to the classical
statement of the problem.

It follows from Equations (2.5) and (2.6) that the vclocity potential
ol{x,y,2,t) is a harmonic function which satisfles the following conditions:

op _ o9 _ 9% . S 3.1
= 0 on 3, 2 at—{—VQV(p on 3.1

*) This conditlon follows from continuity of the fluid.
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where n designates the external normal to the container surface.

We shall now determlne the i1sochronlic variation of the action integral
(2.8). The volume ¢ is bounded by the surface ((x,y,t) and is, therefore,
subject to variation. In general the walls of the container can be inclined.
This renders the area of S, also subjected to varilatlion. Moreover, owing to
the second of Equations (3.3), the variations of the functions ¢ and { on
the free surface are connected by a certain relationship. Let us take varia-
tions of both sldes of thls equation. As the independent variables x, y and
z are not subject to variation we shall get

P 4 V8LV + vE-voe — B0
t d3
This relationship can be written in the form

a1 8y 1
dt cosy én ? cosy

=V 1+ &0 3.2)

where n denotes the outer normal to the free surface., Equation (3.2) glves
the relationship between the variations &p and 8( on the free surface,

Moreover, from the condition A9 = O and the first of Equations (3.1) we
find that 5
a

Adp = 0 within the volume V, 759 =0 on the surface I, (3.3)
n

( ggw we shall evaluate the isochrunic varliations of the actlon integral
2.

o = § {pi V-V dv + % p E (V9)*6L s + % p 6850 (V92 8%dS +

+ pfoV — pg% 8L dS — pg S £8LdS — 088 — 0,03, — 02522} dt (3.4)
5, 85,

The appearance of the second and the third terms in the last equation 1s
due to the varliations of the volume V and the area §, . We shall discuss
term by term the equation for &5 .

By Green's theorem and with the help of Equations (3.3) we shall transform
the first integral thus

. = 0 o 1 9b¢
SV(PVGWV ScpAG(pdV-i—i 22 as §mtan_dS

Now using Equation (3.2) we shall obtain

| vo-wp v ={ ¢ LL as (3.5
A4 Sy

Leaving the second integral as i1s 1s, we shall discuss the third. from
Fig.2 we have

S (V)WL ds =S ()L dA
/ 88, Lo

where 1, denotes the curve bounding the surface

8 Sy. It 1s obvious 81~ 8 1if the angle of the

——— container wall inclination to the g-axis 1s not
very small (i.e.tan g ~ 1), The integral is there-

Y fore of order (${)° and can be neglected, Simi~
lagly, the sixth term can be estimated and neglec-
ved,

Let us consider the fourth term, It is easy
to see that

Pig., 2
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& =

Also, following the above argument, 1t can be shown that the second integ-
ral 1s of the order (8()® and can be neglected.

Hence
o = S 8L ds (3.6)
5,

Leaving the fifth term unchanged we shall examine the seventh. Clearly

s=\ VT &, as=SMds S_i_as
.. AVIF @ ) dest

Integrating by parts it is not difficult to show that

(P Soma (o

where v denotes the external normsl to the curve [, , and R, and R, are
the principal radii of curvature of the free surface., With this, the double
mean curvature 1is

1 1 1 a 9 L 9 \2
—_— == 1A “o -

LA u+<v;)=1"'{ H( = ) g}
As can be seen from Fig.2

% 4 dS=S 1 star
) cosy T

55,

And it 1is easy to show that
81 = cos 7sin B 8L

sin 6
Moreover 9§ /dv = — wny. Therefore
1 sin at .
ds = 8L d. ‘ -2 = — d
S s 4 SsinB tda, | S cos 182 a Ssmyc,dx
55, L, Lo fo
Finally, from Fig.2 1t I's clear that
B=06+y—1mn, sinf = — cos (0 + y)
With the help of all these formulas we find that
1 1 cos 0-cos 1
88 = — (__ __)a dS—S_._.___G dh 3.7
§ Rx+R, ¢ sin 6 ¢ 3.0
o Lo

Let us evaluate the last two terms of Equation (3.4). Since the area of
the container surface I,+ £, remains constant, 8L, = —3L;. And, as can be
seen from Fig.2

8%, = S hdh, 8h =031 ot
sin 0
Therefore Ly

0,0, + 0,08, = (— 0y + c,)S ‘;’_:% 3L dh 3.8)
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In this way, the variation of the action integral (3.4) can be transformed
with the help of Equations (3.5) through (3.8) into

1

-~

N=S{p§¢%€ds +5e{ ('Vq>)’6€dS+p/S 8z ds —
0 ’ o S0
_ pg;cogds +o§.(%+%’.) dLds — S (—acos® —olj-o,)cs‘;ig 6cdx} dt (3.9)

The first part of the expression can be integrated by parts with respect
to time. Then assuming that 8 = O at ¢ =0 and ¢ = t,, we obtain

Si‘?%dsdt-zi(l?éc l:dS —S§%6Cd5dt = —s;[% + (V‘P)’] 8LdSdt (3.10)

Thus, from the condition &J = O and Expressions (3.9) and (3.10) it
follows that

4
— ol [ + 1 (e ot L1y —
W P;[aﬁ‘z‘v"”“‘ S (g tgg)— 1] deas
H
_C _ cos ¥ -
S( 0.cos 0 — 0y + o) 2T 6cdx}dz 0 @3.11)
Since the variation &§¢ 1s arbitrary, it follows that with z = ((x,y,t)
% 1 (ep _o(t L1\ 3.12
o R\ ?(31+R.) f (3-12)
on the contour [
0y =0y + 0cosO (3.13)

Let us examine Equation (3.13). The free
surface of the liquid makes an angle ¢ with
the container wall at the point of contact.
This angle is defined as a limiting angle.
Equation (3.13) happens to be the condition of
equilibrium at the points of contact of the
three media. It can be seen from Fig.3 that,
with the accepted notation, cot g > 0, i.e.

8 < gm, in the case of convex meniscus and
cos § < O concave meniscus (8 > in).

In this way the protlem reduces to the deter-
mination of the harmonic function o{x,y,z,t)
according to Equations (3.1), (3.12 ang 13.13)
for the region V.

By the same token it is shown that the vari-
ational statement of the problem of ideal,
incompressible fluid motion in a container of
Fig. 3 finite dimensions is equivalent to the clas-
sical statement, by virtue of the corresponding

boundary value problem.

4, Let us consider some particular cases. (a) The problem of the motion
of an ideal, incompressible 1iquid in a contalner of finite dimensions is
stated as follows: from the class of functions satisfying conditions (2.5)
and (2.6) to find those which render & = O for

J =§{§p‘§’ (v<p)=dV—§pgS°c= ds +pr}dt

It can be shown that these functions will satisfy
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B4 LRt gl = withe= (5,4, 0

[ ]This result is a direct generalization of the result obtalned by Molseev
1].

b) The search for the statlonary values of the action (2.8) can be limited
to a very narrow class of functions for which 8{ = O on contour 7 . Then
the varilational statement of the problem of the llquid motlon under the
action of gravitational and surface tension forces assumes the form: from
the class of functions satisfying the conditions (2.5) and (2.6) and 8¢ = O
on the contour 7 , select those which satisfy condition &7 = O for

1
! / ;
J :Hipg (V)2 av ——_i_pgS L2ds — oS -+ p/V}dt
0 14 Sy
It ¢an be shown that these functions will sSatisfy
o9 4 1 2 s (1 '._1.)=: 1th z = ¢
S+ o (Ve gt P(RLTIQ fowithz=1C (2,9, 0

¢) The variational statement of the problem of equilibrium of a liquid
enclosed in a contalner of finite dimensions and subjected to the action of
gravitational and surface tenslon forces also obtalns as a particular case
of the dilscussed problem. Namely: from the class of continucus functilons,
select those which satisfy the condltion &7 = O for

U= Lo S + o5+ o + 02, — o
2 M
It appears that these functions will satlsfy
gé—%(%%-}?—t):f with z = { (z, ¥)
(4.1}
0y = 0, - &cos 0 on the contour [

If the solution of this problem 1s sought in a class of functlons satis-
fying the condition 8¢ = O or the contour [ , then

v=goee| as o5 —op
27
and the sought functions will satisfy the first of Equations (%.1).

The author expresses his gratitude to N.N. Moiseev and A.D. Myshkls for
a number of useful suggestions,
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