
VARIATIONAL STATEMENT OF THE PROEGEM 
OF LIQUID MOTION IN A CONTAINER 

OF FINITE DIMENSIONS 

puruATBxoNNAIA BoRKuLIKov1cA ZADAOHI 0 DVIZHENII 

=CSTI V SOS= KONKOKNYKH RAZKKFtOV) 

PMM V01.28, ta 4, 1964, pp.754-758 

A.A. PEX'ROV 

(Moscow) 

(Received May 6, 1964) 

Presented here Is the variational statement of the problem of non-linear 
oscillations of the ideal, IncompressIble liquid enclosed in a container of 
finite dimensions and subjected to the forces of gravity and surface tension. 
The variational approach allows this problem to be solved by direct methods. 

1. We shall consider the motion of the ideal, Incompressible liquid in 
a container of finite dimensions. The liquid volume V partially fills the 
container, the remaining part is occupied by gas. It Is assumed that the 
liquid Is acted on by the gravitational forces of intensity 0 and the for- 
ces of surface tension. We shall denote the coefficient of surface tension 
for Z, the container - gas interface by oi, the coefficient of surface 
tension for z the container - liquid Interface by ao, and a , that, for 
S the gas - llquld Interface. 

We shall use the Cartesian system of coordinates Oxya, with the plane 
ny normal to the vector g and the a-axis pointing vertically upward (F3g.l). 

Moreover, It is specified that the xv-plane 
coincides with the mean posltlon of the 
liquid surface. SO shall denote the pro- 
jection of free liquid surface S on this 
FlaIlC and L shall denote the Intersection 
of the surfaces S and Z the Internal 
surface of the container. The elevation of 
the free surface above 2 7: 0 shall be 
denoted by C(x 
position c = c x,y). 

,p For the equilibrium 

Wa shall denote the velocity of the liquid 
by v and its density by p . We shall 
neglect the mass of the gas above the liquid 
and consider it to be quiescent. 

Fig. 1 2. The kinetic energy of the system Is 
given by 

T=Sp VW 
s 

(2.1) 

V 

Subject to above assumptions the potential energy can be written as 
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rI-+pg g~dS+uS+o~X,+a,& 
\ 

(2.2) 
. 
SO 

and consists of potential energy due to the gravitational field of intensity 
g and the free energies of the interfaces C,, p2 and S . 

Note. It should be pointed out that the expressions taken for the 
energy of the interfaces between two media are correct only If the media are 
quiescent. Generally speaking it does not follow that the expressions will 
remain the same for the case of moving media. This question is not consi- 
dered here. 

The Lagrangian for the system is 

L=T-I-I (2.3) 

and the action integral after Hamilton 
4 

J = ‘Ldt. 
! 

(2.4) 

According to Hamilton’s principle lhe action integral for motion (2.4) 
assumes a stationary value, i.e. its lsochronic variation vanishes: bJ = 0. 

We shall consider the liquid contained in the volume Y as a mechanical 
system obeying the following relations. The flow is potential, the liquid 
is Inextensible (capable of sustaining Infinite tensions) and container 
walls are Inpermeable, I.e. 

v = V% I v-v = 0, v, I=, 0 (2.5) 

Also, the vertical components of the velocity of liquid particles con- 
tained In the free surface coincides with the rate of vectorial displacement 
of the free surface itself (*) 

The volume of the liquid does not vary, i.e. V = const . The last equa- 
tion, lsdperlmetry, can be excluded if instead of considering the Lagrangian 
L , one considers the function 

L’=L+pfc’ (2.7) 

where the quantity 4 is independent of the space variables x, g and z . 

As a result of Equations (2.1) to (2.4) and (2.7) the action integral can 
be written in the form 

II 

J= c”dS - nS - crlZl - ozBl) dt (2.8) 
I 

The problem of the description of the fluid motion can, therefore, be 
stated as follows: from a set of functions satisfying Equations (2.5) and 
(2.6) to choose functions extremlzlng the action integral, i.e. satisfying 
bJ = 0. 

3. We shall show that the variational statement cf the problem of ideal 
incompressible fluid motion In fixed container and subjected to the ection 
of the forces of gravity and surface tension, Is equivalent to the classical 
statement of the problem. 

It follows from Equations (2.5) and (2.6) that the velocity potential 
rp(x,y,z,t) Is a harmonic function which satisfies the following conditions: 

*) This condition follows from continuity of the fluid. 
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where n designates the external normal to the container surface. 

We shall non determine the isochronic variation of the action integral 
(2.8). The volume v Is bounded by the surface C(x,p,t) and Is, therefore, 
subject to variation. In general the walls of the container can be Inclined. 
This renders the area of S also subJected to variation. Moreover, owing to 
the second of Equations (3.!), the variations of the functions (o and C on 
the free surface are connected by a certain relationship. Let us take varla- 
tions of both sides of this equation. As the independent variables 3, p and 
_- are not subject to variation we shall get 

This relationship can be written in the form 

dK_ 1 a&-J -- 
dt - cos 7 an ’ 

& = v-i + (v5)2 (3.2) 

where n denotes the outer normal to the free surface. Equation (3.2) gives 
bcp and bg on the free surface. the relationship between the variations 

Moreover, from the condition Acp = 0 
find that 

A@ = 0 within the volume V, 

Now we shall evaluate the lsochronic 
(2.8) , 

and the first of Equations (3.1) we 

a* = 0 on the surface Iz 
an 

(3.3) 

variations of the action integral 

6J = ” p 
SI 5 

vcp.vBq dV + f p \ (V(P)~& ds + f P \ (V(P)~ X ds + 
* 

0 v so 8% 

t P@V - Pg 
c 

fK ds - Pg tijc dS - a&S - a,6Z, - a,8Z, dt (3.4) 
. 
SO 8% 

The appearance of the second and the third terms in the last equation Is 
due to the variations of the volume V and the area S, . We shall discuss 
term by term the equation for bJ . 

By Green’s theorem and with the help of Equations (3.3) we shall transform 
the first integral thus 

c VPV&dl 
t 

Now using Equation 

Leaving the second 
Pig.2 we have 

(3.2) we shall obtain 

5 vpv&pdv= &%Ls s dt (3.5) 

V SO 

integral as Is Is, we shall discuss the third. PPO!!l 

where L denotes the curve bounding the surface 
s0 * It 1s obvious &I- 6; If the angle of the 
container wall Inclination to the r-axis Is not 
very small (i.e.tan 6 _ 1). 
fore of order (pi)3 

The integral Is there- 
and can be neglected, Slml- 

larly, the slxtn term can be estimated and neglec- 
ted. 

Let us consider the fourth term. It is easy 
to see that 

Fig. 2 
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bV = s SC as + s @ia 
SO 8% 

Also, following the above argument, it can be shown that the second integ- 
ral is of the order (a<)’ and can be neglected. 

Hence 
8V= 66dl.7 

s (3.6) 
SO 

Leaving the fifth term unchanged we shall examine the seventh. Clearly 

Integrating by parts It is not difficult to show that 

s vb*va6 dS = 
s,vl + WZP 

where v denotes the external normal to the curve L., , and I?, and R, are 
the principal radii of curvature of the free surface. With this, the double 
mean curvature is 

As can be seen from Fig.2 

c 
.-La= -.-!-AdA 

s’s. 
cos y 5 cos 7 

h 
And it is easy to show that 

h1 =cosrsinP ag 
sin 0 

Moreover a{ /& = - my. Therefore 

Finally, from Fig.2 it i’s clear that 

B = C $ Y - V,n, sinj3 = - cos (0 + y) 

With the help of all these formulas we find that 

(3.7) 

Let us evaluate the last two terms of Equation6h3,4). Since the area of 
the container surface C, + Za remains constant, , -. 8X,. And, as can be 
seen from Flg.2 

Therefore 

6C, = bhdh, 
5 

8h?z66t; 
sin e 

Lo 

(3.8) 



In this way, the variation of the action Integral (3.4) can be transformed 
with the help of Equations (3.5) through (3.8) Into 

me first part of the expression can be Integrated by parts with respect 
to time. Then assuming that a{ = 0 at t = 0 and t = t,, we obtain 

!Chus, from the condition bJ = 0 and Expressions (3.9) and (3.10) it 
follows that 

Since the variation bC Is arbitrary, it follows that with I = c(x, I/r t ! 

the contour L 
u,=u~+ucose (3.13) 

Let us examine Equation (3.13). The free 
surface of the liquid makes an angle 9 with 

on 

Fig. 3 

boundary value problem. 

the container wall at the point of contact. 
This angle Is defined as a llmltlng angle. 
Equation (3.13) happens to be the condition of 
equilibrium at the points of contact of the 
three media. It can be seen from Fig.3 that, 
with the accepted notation, COL e > 0, I.e. 
13 -C an, In the case of convex meniscus and 
COB e < 0 concave meniscus (e > &?I. 

In #Is way the problem reduces to the deter- 
mination of the harmonic function 
according to Equations (3.1), (3.12T(Xa’f4t!3) 
for the region V. 

By the same token it Is shown that the vari- 
ational statement of the problem of Ideal, 
Incompressible fluid motion In a container of 
finite dimensions Is equivalent to the clas- 
sical statement, by virtue of the corresponding 

4, Let us consider some particular cases. (a) The problem of the motion 
of an Ideal, Incompressible liquid in a container of finite dimensions is 
stated as follows: from the class of functions satisfying conditions (2.5) 
and (2.6) to find those which render bJ = 0 for 

It can be shown that these functions will satisfy 
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with I = 5 (r, y, t) 

This result is a direct generalization of the result obtained by Molseev 
cu. 

b) The search for the stationary values of the action (2.8) can be limited 
to a very narrow class of functions for which 8g = 0 on contour L . Then 
the verlational statement of the problem of the liquid motion under the 
action of gravitational and surface tension forces assumes the form: from 
the class of functions satisfying the conditions (2.5) and (2.6) and 6C = 0 
on the contour L , select those which satisfy condition 6J = 0 for 

(vq~p)~ dV - + pg 
s 
5" dS - OS +- pfV dt 

0 V s 0 

It can be shown that these functions will satisfy 

c) The variational statement of the problem of equilibrium of a liquid 
enclosed in a container of finite dimensions and subjected to the action of 
gravitational and surface tension forces also obtains as a particular case 
of the discussed problem. Namely: from the class of continuous functions, 
select those which satisfy the condition bU = 0 for 

u=$? 52dS+oS+01~:1+02&-Pfl 
s 
s 0 

It appears that these functions will satisfy 

g< - %($ +&) = f with z = 5 (6~) 
2 

(4.1) 
02 = 01 + 4cos 0 on the contour L 

If the solution of this problem Is sought in a class of functions satis- 
fying the condition 6g = 0 on the contour L , then 

U=$pg ~ZdS+.S-ppfV 
% 
s ll 

and the sought functions will satisfy the first of Equations (4.1). 

The author expresses his gratitude to N.N. Molseev and A.D. Myshkis for 
a number of useful suggestions. 
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